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ABSTRACT

Coordination within decentralized agent groups frequently requires
reaching global consensus, but typical hierarchical approaches to
reaching such decisions can be complex, slow, and not fault-tolerant.
By contrast, recent studies have shown that in decentralized animal
groups, a few individuals without privileged roles can guide the
entire group to collective consensus on matters like travel direc-
tion. Inspired by these findings, we propose an implicit leadership
algorithm for distributed multi-agent systems, which we prove reli-
ably allows all agents to agree on a decision that can be determined
by one or a few better-informed agents, through purely local sens-
ing and interaction. The approach generalizes work on distributed
consensus to cases where agents have different confidence levels
in their preferred states. We present cases where informed agents
share a common goal or have conflicting goals, and show how the
number of informed agents and their confidence levels affects the
consensus process. We further present an extension that allows for
fast decision-making in a rapidly changing environment. Finally,
we show how the framework can be applied to a diverse variety of
applications, including mobile robot exploration, sensor network
clock synchronization, and shape formation in modular robots.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Performance, Theory

Keywords

Biologically-inspired approaches and methods, Multi-robot systems,
Collective Intelligence, Distributed Problem Solving

1. INTRODUCTION

Animals achieve robust and scalable group behavior through the
distributed actions of many independent agents, e.g., bird flock-
ing, fish schooling, and firefly synchronization. In such systems,
each agent acts autonomously and interacts only with local neigh-
bors, while the global system exhibits coordinated behavior and
is highly adaptive to local changes. It is a remarkable empirical
fact that the actions of a large group can be determined by one or
a few “informed” individuals with privileged knowledge, without
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explicit signaling [2]. Here we present an algorithm that exploits
this type of decision-reaching process, which we call implicit lead-
ership, and prove that a system of agents following it will come to
rapid global agreement under appropriate assumptions. This work
also generalizes the formalism of distributed consensus [3,9,16], a
method shown to be successful in multi-agent agreement tasks, and
extends it to handle cases where agents may have different degrees
of confidence in their preferred state.

Coordination can be challenging in large multi-agent systems
where agents are spatially distributed or heterogeneous, as some
agents will be able to obtain important information not available to
others. For example, in a multi-robot search task, robots close to
a target may be able to detect or track it better than those farther
away; in sensor network time synchronization tasks, nodes closer
to the base station can provide more precise timing information.
These informed agents need to play a more important role when
it comes to reaching a group consensus. One approach that can
incorporate this privileged information is to designate a centralized
coordinator to collect information from all agents, then disseminate
a decision to the whole group. However, such a strategy interferes
with the system’s scalability and robustness: the coordinator can
easily become a communication bottleneck, and it is also a poten-
tial point of failure for the system [15].

Natural systems can suggest decentralized control laws that avoid
these drawbacks. Couzin et al. have proposed a model for animals
in groups such as migrating herds, in which only a few informed in-
dividuals influence the whole group’s direction of travel [2]. Ward
et al. report on nonlinear decision mechanisms in which fish choose
movement directions based on the actions of a quorum of their
neighbors, some of whom may have privileged information [14].
These studies provide examples of effective decentralized decision-
making under information asymmetry, in which there is no explicit
announcement of leaders or elaborate communication; each indi-
vidual simply modifies its behavior based on that of its neighbors.

One disadvantage of these studies from an engineering stand-
point is that they are purely empirical, without guarantees regarding
the observed behavior or analytic treatment of the conditions under
which the results will hold. Designing effective controllers for arti-
ficial systems requires addressing several open questions: How do
we prove that the informed agents correctly influence the rest of the
group? Can we characterize factors related to the speed with which
the group can reach a decision? How do we resolve cases involving
conflicting goals?

Here we propose an implicit leadership framework by which
distributed agents can reach a group decision efficiently. We ad-
dress the above theoretical challenges and generalize the approach
to more complex scenarios. Our approach is that of distributed con-
sensus (DC) algorithms [3, 9, 16], with a critical departure: while
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traditional DC studies make the assumption that all agents have
equally valid information, here we allow agents to be informed to
varying degrees. This generalization allows DC approaches to be
applied to a wider range of scenarios. We characterize the algo-
rithm’s theoretical properties and provide extensions: (1) We prove
that its use indeed leads to the desired group behavior: a subset of
informed agents with the same goal can correctly lead the whole
group to adopt that goal, achieving a consensus decision. (2) We
characterize how factors such as the fraction of informed agents in
the group affect the speed with which the group arrives at a deci-
sion. (3) We generalize the algorithm to the case where informed
agents have different goals, by having them modify their confidence
levels according to the states of their neighbors (implicit leadership
reinforcement). (4) We further extend the framework to improve
group performance and convergence speed in rapidly changing en-
vironments (fast decision propagation). Finally, we demonstrate
how the framework can be applied to a diverse variety of distributed
systems applications, including multi-robot exploration, sensor net-
work clock synchronization, and adaptive shape formation in mod-
ular robots.

2. RELATED WORK

Biological collective behaviors, where coordinated global be-
havior emerges from local interactions, have inspired decentral-
ized approaches in various types of multiagent systems, e.g., swarm
robotics [1,7], modular robots [12, 16], and sensor networks [6]. A
central challenge for these systems is designing local agent control
rules that will provably lead to desired global behaviors.

In the control theory community, there has been some success in
analyzing bio-inspired rules related to distributed consensus, e.g.,
in flocking [8] and multi-robot formation tasks [3,9]. Rules pro-
posed for these problems have similar algorithmic properties and
their convergence and performance have been analyzed for arbi-
trary topologies. While most systems assume leaderless scenarios,
some recent studies have shown how to control the whole group’s

behavior by controlling specific agents designated as leaders, whether

a single agent [3], multiple agents [4,13], or even virtual leaders not
corresponding to actual agents [S]. Such studies generally assume
that leaders are pre-designated and have the same objectives. In a
distributed multi-agent system, agents that can sense important as-
pects of the environment might naturally provide guidance to the
group, without an explicitly privileged role as leaders. Inspired by
recent biological studies [2,14], we propose and analyze an implicit
leadership framework that can capture such scenarios, and further
show how these mechanisms can resolve conflicts between leaders
and achieve fast decision-making.

Particle Swarm Optimization (PSO) shares certain similarities
with our algorithms in terms of mathematical formulation [10].
However, our overall framework is quite distinct from it: PSO is
an optimization technique with each particle (agent) representing a
solution to the objective function, while our framework addresses
distributed multiagent decision-making tasks with each agent rep-
resenting an independent decision maker.

3. MULTI-AGENT MODEL

Our model comprises a set of independent agents a;, each of
which can control certain of its state variables x; (e.g., heading
direction in Fig. 1), and determine the states of neighbors within
some fixed range. This determination may be passive, via sensing,
or active, via communication. Some agents have privileged knowl-
edge, e.g., due to better sensing capabilities or a location close to
an object of interest. These informed agents have a goal state z;,
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(b)
Figure 1: (a) A node indicates an agent and an edge indi-
cates a neighborhood link. The dotted line indicates agent a5’s
sensor/communication range. Informed agents (colored) have
their own goal states (arrows). (b) Agents start with random
headings and try to make a consensus decision. Solid/dotted
arrows for informed agents represent current/goal directions,
respectively.

Algorithm 1 Equation for state update with implicit leadership. All
agents execute this update at each time step. Informed agents (w; >
0) influence the rest of the group without explicit commands. The
two terms represent behaviors (a) and (b) as described in the text.

loop

w; *

zi(t+1) «— - Tave (t) + - T

il ) 1+ w; e () 1+w; ~°
Behavior (a) Behavior (b)

and a confidence w; in that goal (Fig. 1 (a)).

Neighborhood relationships among agents can be described by a
connectivity graph (Fig. 1 (a)). Nodes represent agents, and edges
indicate that agents are within sensor or communication range. We
assume that this relationship is symmetric; hence the graph is undi-
rected. Since agents can move, the graph can potentially be time-
varying. We refer to this case as a dynamic topology. If the graph
remains static, we refer to it as a static topology.

Throughout the following sections, we use collective pursuit in
multi-robot systems as a motivating example: there exists some
moving target whose heading direction the whole group needs to
match (Fig. 1 (b)). Such a task may arise in, e.g., patrol scenarios
(finding and pursuing an intruder), exploration (where the group
moves in the direction of a feature of interest), or human-robot in-
teraction (where a user needs to guide a swarm to a desired loca-
tion). In this example, an agent’s (robot’s) direction is its relevant
state variable. In §7 we discuss applying our approach to a wide
variety of tasks.

4. IMPLICIT LEADERSHIP ALGORITHM

Here we present the algorithm that achieves collective decision-
making in the multiagent system. Inspired by Couzin et al. [2], our
agent control law incorporates two components: (a) a tendency to
align its state with those of its neighbors, and (for informed agents)
(b) an attempt to achieve its goal state. At each time step, each
agent computes its new state as a function of its old state and the
states of its neighbors. The control algorithm can be formally writ-
ten as in Algorithm 1. In that equation, a; indicates agent ¢ and
Zavg(t) is simply the average of the states of agent a; and its neigh-
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N;(t) is the set of a;’s neighbors at time step ¢. The factor w; /(1+
w;) captures the degree to which agent a; drives itself to the goal
state z;, and 1/(1 + w;) the degree to which it follows the local
average. If a; is an informed agent, its confidence w; is positive;
otherwise w; = 0. In the rest of this section, we assume that w;
and x; are constant over time.

All agents execute the simple rule of Algorithm 1, with no need
for informed agents to take specific actions to coordinate others or
communicate their goal states. For instance, when a robot team
starts with randomly initialized heading directions and only some
robots have knowledge of a unique global goal direction, the latter
set w; to be positive to reflect their confidence and z; to match that
goal. All agents repeatedly update their heading direction x;(t)
according to Algorithm 1, and are iteratively influenced by the in-
formed agents to reach the desired consensus. Each agent knows it
has reached a stable decision state when the maximal state differ-
ence between it and any of its neighbors is less than a small number
€.

4.1 Algorithm Analysis

Here we analytically prove properties of Algorithm 1’s correct-
ness and performance. In this section we state our theorems, and
defer all proofs to the Appendix.

First, in the absence of informed agents (w; = 0V%), our con-
trol formulation becomes identical to that of distributed consensus
[3,9,16]. If the communication graph is connected or periodically-
connectedl, all agents will converge to the same state: lim;—.oc =; (t)
=z = % >, 2:(0) Vi, where N is the number of agents. Dis-
tributed consensus analyses have been applied to many areas, e.g.,
sensor network synchronization, and the theoretical properties have
been widely explored [9].

Next, we consider how the decision of the group is influenced
when there are informed agents all with the same goal state (z}
2™ Vi such that w; > 0). More specifically, we ask: (1) Will all
agents converge to z*? (2) How does convergence speed relate to
the confidence factors w; and the number of informed agents? (3)
Will agents converge to the same state in both dynamic and static
topology cases?

We first introduce two definitions: (1) Informed agent group: A
set of informed agents £; with the same goal state Ty. (2) In-
formed agent-connected: A condition for dynamic topologies in
which a path always exists between each non-informed agent and
some informed agent, and this path persists without modification
for dmax + 2 time steps. Here dmax is the maximum among all
non-informed agents of the shortest hop distance to an informed
agent.

THEOREM 4.1. (Convergence) Let there be only one informed
agent group with goal state x*, with all agents executing control al-
gorithm 1. Let the communication topology be either (1) static and
connected, or (2) dynamic and informed agent-connected. Then

lim z;(t) = 2" Vi
t—o0
PROOEF. See Appendix A. [J
Intuitively, Theorem 4.1 tells us that if the agent topology is either
connected or informed agent-connected, all agents will eventually
be able to follow a single informed agent group.

Next we consider how the group size and confidence weights of
informed agents can affect the convergence rate.

'A graph with dynamic topology is periodically-connected if, for
all pairs of nodes {a;,a;}, some path P between them exists
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Figure 2: Average error in heading direction within the group
over time, for (a) different confidence levels and (b) number
of informed agents. The y-axis gives agents’ average distance
from the goal state. Convergence speed increases when the con-
fidence and/or number of informed agents increases. Each data
point is averaged from 50 random initializations.
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THEOREM 4.2. Under the same conditions as Theorem 4.1, the
system’s convergence rate increases if more agents become informed,
or if existing informed agents increase their confidence levels, in
both connected (static) and informed agent-connected (dynamic)
topologies.

PROOF. See Appendix B. [

Experimental Results: We also explore these relationships in
simulation. Our simulation model is composed of 50 agents that
are initially randomly distributed within a 10 x 10 area (arbitrary
units). They can freely travel in 2D space without boundaries. Each
agent moves a distance of 0.05 per iteration and has a communica-
tion radius of 4. An agent’s state is characterized by its heading
direction z; € [0,2m). All agents begin in random states, and
informed agents are given a common goal direction. Our evalu-
ation metric is defined as agents’ average distance from the goal
state. Fig. 2 shows how the convergence speed changes when (a)
all informed agents’ confidence weights are increased (we fix the
number of informed agents at 10), or (b) more agents are selected
as informed agents (we fix informed agents’ confidence at 2). The
convergence speed to the informed agents’ goal direction increases
in both cases.

Finally we consider the case where informed agents do not all
share the same goal state—i.e., multiple informed agent groups.

THEOREM 4.3. (Multiple Informed Agent Groups) Let there be
multiple informed agent groups L1, Lo, - - - , Lq with different goal
states T7,%T5,- -+ ,Ty. Let agent topology be static and connected.
Then each agent’s state will converge to some value, but this value
can be different for different agents.

PROOF. See Appendix C. []

Consider an example with agents arranged in a line, where the
two agents on the ends are informed and have opposite goal di-
rections. The agents between them will then converge to states in
between the goal states of the two informed agents. This conver-
gence holds for static topologies, but not for dynamic topologies;
in the latter the agents may never converge to a fixed state’.

Given these results, if a single group consensus is to be reached
and there are initially multiple informed agent groups, it is neces-
sary for them to become a single group with a common goal state.

and persists without modification for a number of time steps >
length(P) + 1.

2To see this, suppose that each agent’s state has converged to a fixed
value, and that the topology then changes such that a non-informed
agent a; goes from having an informed neighbor in £; to instead
having one in L (j # k). Then a;’s state will clearly change.

45
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Figure 3: (a) £1 and L, observe different targets and have distinct goal states. (b) When informed agents in £; increase their
confidence (different curves) or the size of £; increases (x-axis), it increases the probability that £; dominates (i.e., ultimately
becomes the only remaining informed agent group). (c¢) When more agents join £; during the course of a run, £;’s dominating
probability increases; similarly, the probability decreases when more agents leave £;. (d) The probability that £, dominates is not
appreciably affected by slight variation among the goal states of agents within the group.

Algorithm 2 Implicit leadership reinforcement (ILR) lets informed
agents change their confidence so that the entire group can reach a
single consensus. Agents execute this reinforcement routine along
with the standard implicit leadership algorithm (Algorithm 1). The
function 1{C'} evaluates to 1 if condition C' is true and 0 otherwise
(line 3). We setd = 0.6, p = 0.4,t = 5, and o = 0.5.
loop
if a; is an informed agent then
if Zjlaj EN; 1{Hmjuli\;iglgr = p then
wi(t+1) =wi(t) + «
else
wi(t + 1) = max(w;(t) — «, 0)
if w; has been 0 for £ time steps then
a; becomes non-informed (w; = 0 permanently)

In the following, we describe how to extend Algorithm 1 to achieve
this.

IMPLICIT LEADERSHIP REINFORCE-
MENT (ILR) ALGORITHM

In many tasks, it is necessary for a single informed agent group
to emerge. For example, in a multi-robot search and rescue task,
informed robots at different locations may observe different clues
and thus have different opinions about where rescue subjects are
located, yet the whole group may eventually need to agree on a
single rescue target to secure enough robot force to complete its
task. We can achieve this aim by replacing the constant w; of
informed agents with a time-varying variable w;(t). We call the
mechanism that decides how w; (¢) should change implicit leader-
ship reinforcement (ILR).

Algorithm 2 describes ILR. The idea is that informed agents have
their confidence increase if the states of a sufficiently large fraction
p of their neighbors are sufficiently close to their own goal states
(within ¢); otherwise the confidence decreases, and if it reaches 0
for long enough then the agent loses its “informed” status.

This approach has the following advantages. (1) While each
agent has only a local view, the result that emerges nevertheless
captures global statistics. The informed agent group with a larger
population or higher confidence dominates the decision with a high
probability. (2) At any time, agents can join or leave an informed
agent group or change confidence while observing more instances,
and the system will accommodate these updates without the pro-

S.
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cess needing to restart. (3) Only a few iterations are required for a
single informed agent group to emerge.

We call an informed agent group a dominating group if at some
point it contains all remaining informed agents—i.e., all agents
in other groups have become non-informed. If this occurs, then
all agent states will converge to the dominating group’s goal state
so long as the connection graph is connected or informed agent-
connected (Theorem 4.1).

Experimental Results: Since we do not yet have analytical
proofs of convergence of ILR, we investigate its performance ex-
perimentally. We use the same simulation setup as in Section 4.1.
Initially, two informed agent groups £; and L2 are constructed by
choosing a total of ten informed agents forming two spatial clusters
(Fig. 3 (a)). The two groups are given distinct goal headings, set
in opposite directions. In 1800 experiments, the average number
of iterations required for a dominating group to be established is
21. After a further 20 iterations on average, all agents arrive at a
consensus heading direction with an average error within 0.05 rad
of the informed agents’ goal.

Informed agent group size and confidence: Here we investigate
the probability that £, becomes a dominating group, as a func-
tion of initial group size and confidence level. Fig. 3(b) shows the
results of varying the number of agents in £1 from 1 to 9 (| £2| cor-
respondingly varies as 9 — 1), and of varying the confidence of
the agents in £ from 1 to 9 (weights of agents in | £2| correspond-
ingly change from 9 to 1). Each data point represents 50 randomly
initialized trials. Increasing the number or confidence of informed
agents in a group generally yields a higher dominating probability.

Online changes in informed agents: During the consensus pro-
cess, some initially non-informed agents might have the opportu-
nity to make new observations that convert them into informed
agents. Conversely, initially informed agents might lose their in-
formed status, e.g., if they lose track of the group goal. We thus
consider the case where the size of £; changes while the ILR al-
gorithm is running. Initially, we set |£1]| = |£2] = 14 and w;
wy = 5. We randomly select a agent to leave or join £ every five
time steps. The total number of selected agents to join or leave the
group varies from 1 to 13. Fig. 3 (c) shows that a group’s proba-
bility of dominating (averaged from 200 trials) increases as more
agents join the group, and decreases as more agents leave.

Goal variability within groups: In some cases, informed agents
that are properly considered part of the same group may have slightly
different goal states. For instance, noisy observations or perception
difference may prevent different agents observing the same target
from setting identical goals. Because ILR makes no reference to
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Figure 4: Snapshots of a multi-agent system (black arrows) performing collective pursuit of a target (star, red arrow). The target
changes its heading direction to a new random value every 20 time steps. (a) Agents use Algorithm 1 only. The system fragments
into two separated groups after 78 time steps in this run. (b) Agents use Algorithms 1 and 3 (fast decision propagation). The group
remains cohesive for 500 time steps, at which point the experiment ended.

Algorithm 3 Pseudocode for agents to achieve fast decision prop-
agation. N is the set of neighboring agents whose states differ
from z; by at least ¢. r is a random number drawn from a uniform
distribution between 0 and 1. We choose constants k1 = 4 ~ 6,
ko =2,p =04, and qS = 0.4. Agents execute this fast decision
propagation routine along with the standard algorithm (Alg. 1).

loop
. N |R1
< i
ifr < N vin T
and maxy; ryens |[z; — zk|| < p then
1
zi(t+1) = el Zjla,-e/\/; xj(t)
if a; is non-informed then
a; becomes informed

wilt +1) = (757 Xjja, ens w5 (t)

group identity, such variability need not interfere with the algo-
rithm. Experiments that add zero-mean Gaussian noise to each in-
formed agent’s goal state demonstrate that a group’s probability of
dominating is not significantly affected by moderate variability of
this sort (Fig. 3 (d)).

The condition presented in line 3 of Algorithm 2, which evalu-
ates whether a large enough fraction of an agent’s neighbors have
similar states, is experimentally effective for cases where informed
agents are localized into spatial clusters. Other conditions may be
more appropriate for other scenarios. For instance, our preliminary
results suggest that if informed agents are randomly distributed in
space, then the condition ||z;(t) — z} || < é—i.e., informed agents
increase their confidence if they are able to travel sufficiently close
to their goal direction—results in more effective performance.

6. FAST DECISION PROPAGATION

The control strategy we have presented so far requires agents to
iteratively approach a group consensus decision. If the iteration
time is long, consensus can be slow in coming, since tens of up-
dates may be required. In nature, groups of animals can react very
quickly to sudden environmental changes. For example, when a
flock of starlings maneuvers to evade a predator’s pursuit, starlings
on the far side of the flock from the predator react swiftly even
without direct perception of the threat. Inspired by a process by
which a school of fish arrives at a quorum decision quickly [14],
here we further extend our framework in a way that lets a group of
agents reach consensus quickly for coping with rapid environmen-
tal changes.

The basic concept that enables fast propagation is that we allow
non-informed agents to acquire informed status and preferred goal
states through interactions with neighbors. In this way the size of
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Figure S: In a task in which all agents are initially aligned with
a target that then instantaneously reverses direction, agents
consistently reach consensus on the new direction more quickly
when using fast decision propagation (Algorithms 1+3, red
curve) than when using the implicit leadership algorithm (Al-
gorithm 1, blue curve) alone. Averages are over 100 trials.

the informed group increases. An uninformed agent changes its
status to informed when it observes that a significant fraction of
its neighbors have goal states different from its own, and that all of
those neighbors have goals similar to each other. Already-informed
agents can update their goal state x; under the same conditions.
Because the convergence speed increases with the number of in-
formed agents (Theorem 4.2), we expect this extension to result in
faster consensus.

Algorithm 3 shows the fast decision propagation algorithm. We

define NV;" as the set of neighbors of a; whose states differ from x;
by at least some amount ¢. If all agents in N;* have similar states
(max(jkyeny |[2;—2x|| < p), z: changes to be the average of the
' N7 [
INFIFL NG =N P2
If a; was non-informed, it also becomes informed, setting its weight
to be the average of the A" agents’ weights. The choice of expres-
sion for P is based on a study of how fish respond to their neighbors
in quorum decision-making for travel direction [14]. In our imple-
mentation, we set k1 = 4 ~ 6 and k2 = 2, which yields P ~ 1
when the fraction of A; among a;’s neighbors is greater than 0.5.
This formulation also prevents the propagation of a few agents’ bad
decisions: P ~ 0 when “J/\\[;j“ < 0.3.

Experimental Results: We evaluate Algorithm 3 in a challeng-
ing tracking task using the same simulation framework as the other
experiments reported above. A target of collective pursuit (Fig. 4)
moves distance 0.05 per time step and rotates its heading direction
counterclockwise by a random amount between 0.3—0.9 radians ev-
ery 20 steps. Agents within a distance of 5 can perceive the target,
and accordingly act as informed agents. To effectively follow the
target’s rapidly changing trajectory, the whole group needs to prop-
agate the information of the informed agents as fast as possible.

N;* agents’ goal states with probability P =
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Figure 6: Multi-robot exploration (a—c) and sensor network time synchronization (d) tasks. (a) Red agents localize the target and the
whole group iteratively achieves a collective decision. (b) Two groups simultaneously localize two different targets. After running
ILR, the blue informed agents dominate the red informed agents and guide the whole group towards their target. (c) The target
swiftly changes its direction. Fast decision propagation lets more agents become informed agents to allow the group to track the
target quickly. (d) Two sensor nodes that can access UCT are informed agents (top). The whole group eventually achieves the same

phase shifts as the informed agents (¢;(t) — ¢* = 0Vi).

Experiments used 100 different target trajectories of 500 time
steps, tested with each of the following two control laws. Agents
programmed with the basic implicit leadership algorithm (Algo-
rithm 1) alone fragmented into disconnected groups in every trial
(75% fragmented in the first 100 steps), while groups of agents
using fast decision propagation (Algorithms 143) remained con-
nected until the end of the run in 31% of trials. Fig. 4 shows snap-
shots from one example trial. In (a), we see that a large number
of agents end up traveling in a different direction from that of the
target, resulting in two spatially separated groups that cannot com-
municate with each other. By contrast, in (b), the fast decision
propagation algorithm much more consistently lets the group reach
consensus quickly enough to track the target’s movement as a sin-
gle cohesive unit.

We also test how fast the group can react to a sudden reversal of
target direction. Fig. 5 shows the results of experiments from 100
trials in which all agents and the target are initialized with identical
direction and random position, and the target’s direction is instan-
taneously reversed by . Systems using fast decision propagation
consistently adjust to the new direction significantly faster than sys-
tems using the basic implicit leadership algorithm alone.

7. APPLICATIONS

In this section, we demonstrate applying our framework to three
diverse applications. (1) In a multi-robot exploration task, robots
search for a target in a 2D space. Robots close enough to the tar-
get to localize it act as informed agents to allow the whole group
to reach consensus on moving toward the target. (2) In a sensor
network time synchronization task, sensor nodes close to a base
station can access a global clock and thus better serve as informed
agents. The whole group can then achieve more accurate clock
settings than if a standard information-symmetric distributed con-
sensus approach is used. (3) In a modular terrain-adaptive bridge
task, robotic modules at the ends of a chain act as informed agents
with their positions determined by the environment, and when the
modules in between reach consensus, a straight bridge is formed.

7.1 Multi-Robot Exploration Task

Here we consider a team of mobile robots searching for a tar-
get. Each robot agent follows a movement direction d;(t) based on
Reynolds’s flocking rule [11]:

di(t) = ag - xi(t) + ac - de(t) + as - ds(t)
where x; is the heading direction computed by our control rule Al-
gorithm 1; oz, o, s are constants; d. and ds are functions of the
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positions of neighboring agents, with d. associated with maintain-
ing a minimum distance to avoid collisions and d; associated with
attraction between more distant agents. At each time step, each
agent communicates z; (t) to its neighbors.

Fig. 6 (a) shows how agents explore the area with different head-
ing directions (indicated as arrows) until several agents sense the
target. The agents set their goal states as the direction pointing to-
wards the target, and their confidence w; to positive values. All
agents proceed to reach a group decision of moving toward the tar-
get. Fig. 6 (b) shows how ILR allows all agents to reach a single
consensus when two different targets are located simultaneously. If
the target is mobile, the fast decision propagation algorithm allows
the group to track the target more effectively (Fig. 6 (¢)).

7.2 Sensor Network Time Synchronization

In wireless sensor networks, maintaining synchronized clocks
between nodes is important. To save power, sensor nodes are usu-
ally programmed to stay in sleep mode most of the time. Thus it
is important for neighboring nodes to synchronize their timers so
they can wake up at the same time and communicate with each
other. One strategy is to use a decentralized synchronization pro-
tocol inspired by coupled oscillator models in biology [6]. In this
model, each node maintains a phase 6;(t) = wt + ¢;(t), where
0:(t), ¢:(t) € [0,27] (0 = 27) and w is a constant related to fre-
quency of oscillation. ¢;(¢) is the phase shift variable, and each
node’s phase cycles periodically. When 0;(t) 27, the node
wakes up and “fires". If all nodes can achieve identical ¢;(t), the
network is synchronized. The control law in [6] is similar to that
of distributed consensus, and each node constantly exchanges its
phase shift variable with its neighbors. The discrete time step ver-
sion of the protocol can be written as:

Gilt+1) = o) +a Y (6:(0) - ault)

ag eN;

where a is a small constant.

One major drawback of this approach is that it fails to take into
account that some sensor nodes’ timers are more accurate than oth-
ers. In real-world sensor network deployment, some nodes close to
a base station can access and synchronize to Coordinated Universal
Time (UCT) via GPS. With our framework, we set those nodes’ de-
sired phase shift to match the UCT timer, denoted as ¢™, and their
confidence to be positive. The control law then becomes:

1 ! *
di(t+1) — Trw bavg(t) + 1 _?wi ¢

where ¢y, () is the average phase shift of agent ¢ and its neighbors.
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Figure 7: Modular robot shape formation task. Modules at the
two ends form two informed agent groups (£, and £2). Agents
in £, and L, set their goal states to be the heights of the adja-
cent cliffs (h] and h3). The robot converges to a shape forming
a straight slope (Right).

Fig. 6 (d) shows an example scenario for this time synchronization
task. The two leftmost nodes can access UCT and thus act as in-
formed agents. The bottom figure shows the phase shift variables
to which each node converges, which eventually match those of the
informed agents (¢;(t) = ¢* = 0Vi).

7.3 Modular Robot Shape Formation Task

In [15], the authors describe the design and control of modular
robots that adapt to the environment. One example is a modular
bridge, which is composed of actuated modular "legs" connected to
each other by a flexible bridge surface. When the bridge is placed
on an unknown terrain, each modular leg can sense the tilt angles
of the local surface elements and adaptively change its height until
a level surface is achieved. They show that a distributed consensus
strategy can be used to solve this problem. One problem with the
approach presented in [15] is that while it allows all the modules
to arrive at the same height, it cannot be applied to cases where a
subset of agents need to maintain specific desired heights.

Using the approach presented here, one can easily interact with
this system to incorporate desired heights; e.g., by simply fixing
the height of one of the modules, the entire system will converge to
agreement at that height if feasible. The control law can be written:

w; *
(2

hz‘(t + 1) —

hi(t)—i—oz Z 97;]' +1

1

1 + Ws a; c Nq; + (s
where h;(t) and h] represent current and desired heights of the
agents (modules) and 6;; represents the tilt sensor reading between
agents ¢ and j. By fixing the end agents at two different heights we
can further create smooth inclines. Fig. 7 shows a simulation of the
modular bridge where the agents at the two ends are fixed to the
respective heights of the cliffs; the system converges to a smooth
incline (Theorem 4.3). This type of implicit leadership provides a
simple way for influencing and interacting with the modular robotic
system and equally applies to the other applications presented in
[16] such as the pressure-adaptive column and gripper.

8. CONCLUSIONS

In this work we have presented an implicit leadership algorithm
based on a simple, purely local control law. This approach allows
all agents to follow a single rule and efficiently reach a common
group decision without complex coordination mechanisms. We
have characterized the algorithm’s theoretical properties both an-
alytically and experimentally, and presented extensions that han-
dle multiple conflicting goals among informed agents and achieve
fast decision propagation. In a distributed multi-agent system, it
can be tedious to establish infrastructure and coordination mech-
anisms for agents to integrate unpredictably localized information
to make collective decisions. The biologically inspired framework
presented here provides a simple alternative that allows the group
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to reach consensus regarding distributed and dynamic information.

The control rule presented in Algorithm 1 can be extended in
various ways; implicit leadership reinforcement and fast decision
propagation (Algorithms 2 and 3) can be seen as two such exten-
sions. Future work may explore further variations, which addition-
ally may be used in combination; e.g., while we considered Algo-
rithms 2 and 3 separately above, both can be applied to the same
multi-agent system simultaneously. Our preliminary experiments
show that systems using both extensions can achieve effective per-
formance in both resolution of conflicting goals and rapid conver-
gence to consensus.

We have shown how our framework can be applied to several
diverse application areas. Other applications may likewise bene-
fit from incorporating our approach. Many existing control rules
can be modified to incorporate a decision state that is observed or
explicitly communicated between agents, as demonstrated with the
example of Reynolds’s rules for flocking above. Our algorithm can
also be seen as a useful tool that can be exploited in various multi-
agent coordination tasks, with the advantage that controllers for
those tasks thereby acquire the associated convergence guarantees.
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APPENDIX
A. Proof of Theorem 4.1

We first aggregate all agents’ state update dynamics into a single
collective dynamic system. Here we consider the case of a single
informed agent group £1 with common goal state z*. Add an aux-
iliary agent o™ assumed to connect to all informed agents. Agent
states can be aggregated into an (n 4 1)-dimensional vector:
X(t) = [21(8),- -, @a(t),2"]"
The system’s collective dynamics can be written as:

H A(m
)09 G

where F(m) is a n x n matrix, with Fij(m) = o

ifa; € Ni(m)and a; € L1, Fij(m) = m ifa; € N;(m)

and a; ¢ L1, and F;;(m) = 0 otherwise. N;(m) indicates the set

of agent 7’s neighbors at time m. H (m) is a n-dimensional column

vector, H;(m) = (1+ 5 ifa; € L1 and H;(m) = 0 otherwise.

We further define:

1. Matrix maximum norm: ||M [[oc = max; }; Mij;

2. Matrix minimum norm: || M ||—oc = min; » -, Mij;

3. dmax = max; dist(as;, nj)Va; & L1, the maximal distance be-

tween a non-informed agent a, and its closest informed agent n;.
Static Topology: In this case, A(m), F(m), and H(m) are

time-invariant. We can let A(m) = A, F(m) = F, H(m) = H,
and
H AX(1

~ (F H
mH (0 1) X1 @

Since A is a row stochastic matrix all of whose main-diagonal
elements are positive, all elements in A are nonnegative (4;; > 0)
and >, A;j = 1Vi. We can show that (F**1); ; > 0 for any
{4, 7} that are d hops apart, and the connectivity graph G is con-
nected. Since Q(t) = >.! _ | F™ 'H and H; > 0Vi|a; € Ly,
we can ensure (Q;(t) > 0Vi after dmax + 2 time steps. Therefore,
1Q()—c0 > 0. Since [[P(t) o = 1 — [ Q()]|—oc. we can de-
rive 0 < ||P(t)|loc < 1 after dmax + 2 time steps. The maximum
norm of P(t) decreases at least every dmax + 2 time steps. Thus,
limy o ||P(t)||oc = 0 and lim; .o P(t) = 0,limy—o Q(t) =
1= limy oo x4(t) = 2™ Vi

Dynamic Topology: We define G = U’é:*A G(t) as a union of
connectivity graphs over a finite time period A. If agents’ topology
is informed agent-connected during a finite period 7, then for each
non-informed agent a;, there exist at least dmax+2 instances within
7 of a G that connects a; with some informed agent. Thus, there
are at least dypaz + 2 instances of A’ = t/+A A(t) within 7.

We expand Q(7) = (I F( )) H(m). Since all
elements on the main diagonal of A(t) are always positive and there
are at least d,,qq + 2 instances of A’, we can derive Q;(t) > 0Vi
and ¢t > 7. Following a similar procedure as in the static topology
case, we can show 0 < [|P(t)|| < 1 after 7 time steps and the
maximum norm of P(¢) contracts. Thus,

tli>nc>10 P(t) = O,tlinolo Qt)=1=> tl;n)ioxz(t) =z Vi

X(t+1) = (1

X(t+1)
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B. Proof of Theorem 4.2

We first demonstrate that the system’s convergence speed increases
when a previously non-informed agent becomes informed, increas-
ing the number of informed agents from m to m + 1. We first show
this is true in the static topology case. As shown in the proof of
Theorem 4.1, the speed at which the maximum norm || P(t)||oo
approaches zero determines the system convergence speed. We
start by adding one additional informed agent to the system. Let
= [ U L, denote the new informed agent group after adding
agent [ to the original £1 . We use £, P'(t), Q'(t) to denote new
agent matrices for the system with informed agent group £].
Let Q;(t) and Q;(t) be elements of Q corresponding to [, in the
m-informed agent and (m + 1)-informed agent cases respectively.
We can derive matrix elements at t = 2 from Eq. 2:

Q(2) (Z F;Q5(1) >3 FQ;(1) = Qu(2)
j j

J

With the same procedure, we can show Q},(3) > Q(3) for all
agents k that are neighbors of I, Q;.(4) > Q,(4) for all r that are
neighbors of k, etc. Thus Qi(d" + 1) > Qi(d’ + 1) Vi, where
d' = max; dist(l, 7).

Thus, [|[P'(d" + 1)||s < |[|[P(d" + 1)||« and agents converge
faster in the £ case. Adding multiple informed agents at the same
time is a trivial generalization of this proof.

A similar proof applies to the case of changing weight(s) of
informed agent(s) from w; to w; > w;. Let @;(t) be an ele-
ment of ) after the weight increase, and we can write Q;(2) =

(S, @) + 1 > (2, Qi) + 12 = Q).
We can then show Q7,(3) > Q«(3) Vk € N, etc. After d’'+1 time
steps, we have Qj(d' + 1) > Q;(d’ + 1)Vi.
With dynamic topology, if there exists a path between a; and all
non-informed agents, we can similarly show that Q;(2) =
wy

(S, @) + 125 > ¥, RQ5(1) = Qu2). If such a
path exists d’ + 1 times in a finite period 7, we can show Q}(7) >

Qi(m)Viand | P'(7)||co < ||P(7)||oo- Therefore, adding one more
informed agent makes the system converge faster.

C. Proof of Theorem 4.3

With ¢ different informed agent groups, we introduce auxiliary
agent states T - - - Ty, with agents in each informed agent group
L; connected to auxiliary agent with state ;. We can formulate
the collective dynamics of all agents as Eq. 2 of Theorem 4.1 with
a different generating matrix:
P(t)
0

F H :
(b 1) 11
m=1
where F' and P(t) are n x n matrices, and A and Q(t) are n X q
matrices. Following the same procedure as for Thm. 4.1, we can
show that the maximum matrix norm of P(t) approaches zero:

Jim [Pl = 0and 37 Quy(t) = v

A=

At =

A:

Q}t))

Since Q(¢) is multi-column, we show that each element in Q(t)
converges to a stable state: Qq;(t) — Q7; Vi, j. We decompose

it (P(t) Q(t)> _ <P(t -1) Qt— 1)> _ (F H>

0 I 0 I 0 I

Since the bottom right submatrix of A is a ¢ X g identity matrix,
we can get Q;;(t) > Qu;(t — 1) Vi, 7; and Q;;(¢) is monotoni-
cally nondecreasing with ¢ for all 4, j. Therefore, as > ; Qi;(t) ap-
proaches 1, Q4; (t) will also approach a fixed value Q7; Vi, j. Since
each informed agent group’s state is different, each agent converges
to a potentially different fixed state: lim; .o zi(t) = >, Qi; ;.





